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1 Introduction

The theory of NP-completeness was one of the first successful programs of com-
plexity theory, a central field of theoretical computer science. In the domain
of quantum computation, there is a direct analogue of NP called QMA. The
theory of QMA-completeness has advanced much more slowly than the theory
of NP-completeness. To make this a bit more precise, here’s a fun set of data.

Cook published the first NP complete problem in 1971 [3]. Just one year
later, Karp published a list of 21 NP-complete problems, [7] many of them
coming from combinatorial properties of graphs. By contrast, the class QMA
was introduced in 2001 by Kitaev [8]. Adam Bookatz published a survey in
2013 attempting to list all known QMA-complete problems. [2] Just like Karp,
he finds exactly 21!

In 2007, Beigi and Shor had the following idea for generating QMA-complete
problems: take a graph problem, interpret it as a problem about zero-error
information theory, and then lift it to the quantum information setting. The
had some success, defining their QMA-complete QUANTUM-2-CLIQUE problem.
[1] The recent introduction of quantum graphs by Duan, Severini, and Winter [5]
gives us machinery to make Beigi and Shor’s program systematic. In particular,
this viewpoint will lead us to the following computational problem.

Definition 1.1 (QUANTUM-k-COLORING).

• Input: States ρ1, ρ2 ∈ L(HA ⊗HB).

• Promise: Either there exists some cptp map T : L(HA) → L(Ck) such
that

Tr[(T ⊗ IB)ρ1][(T ⊗ IB)ρ2] ≤ a,

or else for all such T ,

Tr[(T ⊗ IB)ρ1][(T ⊗ IB)ρ2] ≥ b.

• Problem: Decide which is the case.

Conjecture 1.2. QUANTUM-k-COLORING is QMA-complete

The main goal of this article is to argue that this problem is a natural
quantum generalization of k-coloring and that it feels like it should be QMA-
complete.

1.1 Organization of the article.

The first section discusses the source-channel coding problem and is meant for
anyone who knows what a graph is—no quantum necessary. The second section
is a brief introduction to quantum graphs and should be readable by anyone
with basic familiarity with quantum information. (I’ll write more on quantum
graphs later, hopefully including some things for people new to quantum.) The
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last section can be profitably read without the second section. It examines the
computational complexity of the problems defined in the first section, reproduces
the proof of Beigi and Shor’s result from 2007, and motivates the conjecture
mentioned in the introduction.

2 On Quantum Source-Channel Coding

The exposition in this section is very similar to exposition in Dan Stahlke’s
paper on the subject. [11] I hope to present it somewhat differently in order
to motivate the computational complexity problem which is the goal of this
article. However, if you want to see a much more polished exposition, go read
Dr. Stahlke’s paper! (As an additional plug, his paper proves some of its lemmas
with the tensor network calculus, which is one of my most favorite physics
things.)

2.1 Classical Channel Coding

Alice wants to send a message to Bob, but it is corrupted along the way. For
example, suppose Alice’s message is an integer between 0 and 4. Nature flips
a fair coin and adds 1 (mod 5) to Alice’s integer if heads and leaves it alone if
tails. How much communication can Alice and Bob achieve in this situation?

Definition 2.1 (Classical channel). A classical noisy channel is a map T :
A × B → [0, 1] such that for all a, T (a) = T (a, ·) is a probability distribution
over B. That is, for fixed a,

∑
b T (a, b) = 1.

In the example we defined, we have T (a, b) = 1
2 whenever b − a ≡ 0, 1

(mod 5). In general, we can also think of T as a stochastic transition matrix
from the state space over A to the state space over B.

Now we ask a question that motivates the rest of the article: given a fixed
channel T , how can we test the capacity of T to perform communication tasks?
To do this test, we’ll introduce a testing party Charlie who referees a challenge
for Alice and Bob. They’ll be able to pass the challenge only if they’re sufficiently
capable of communicating with each other.

Definition 2.2 (Classical zero-error channel coding game). Let [k] = {0, 1, . . . , k − 1}.

• Charlie generates i ∈ [k] uniformly at random and sends it to Alice.

• Alice applies an encoding function Enc : [k]→ A.

• Alice sends Enc(i) over the channel, so that Bob receives a random element
T (Enc(i)).

• Bob applies a decoding Dec : B → I and sends i′ = Dec(T (Enc(I))) to
Charlie.

• Charlie checks whether i′ = i.
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We say Alice and Bob win if they pass the final check. We’re primarily interested
in the question: when is it possible for Alice and Bob to win with probability
1? (This probability is taken both over Charlie’s choice of i and the probability
inherent in the map T .) Call the greatest k for which Alice and Bob can win
this game with certainty the zero-error one-shot capacity of the channel T .
(Sometimes the logarithm of this quantity is called the capacity. We won’t do
any numerics in this article, so the distinction is unimportant for now.)

Example 2.3. Let A = B = [n] and T be the zero-error channel T (a, b) = δab.
In other words, T is deterministic and always gives Bob the exact message that
Alice intended to send. Then Alice and Bob can win the game iff k ≤ n.

Definition 2.4 (Classical confusability graph). The confusability graph of the
channel T : A×B → [0, 1] has vertex set A and edge set

HT = {(a, a′) | ∃bT (a, b)T (a′, b) > 0} .

Intuitively, we say that two of Alice’s messages a, a′ are confusable if there’s
some message b that Bob could receive such that he’s not sure whether Alice
intended to send a or a′. The confusability graph captures exactly this notion.
If two messages are not confusable, then they are distinguishable. To be precise,
if Bob knows a priori that Alice will send one of two distinguishable messages,
then a posteriori he will always be able to figure out which one she sent. This
notion of distinguishability provides a proof for the following:

Proposition 2.5. Alice and Bob have a winning strategy in the channel coding
game with channel T iff HT has an independent set of size k.

For the example channel that we defined at the outset, it turns out that the
confusability graph is the 5-cycle. Then by Proposition 2.5, the zero-error one-
shot channel capacity of this channel is 2. Notice that this is the same capacity
as the channel which sends one bit without error. However, it can be shown
that if Alice and Bob are allowed multiple uses of the channel, then they can in
some sense achieve a capacity of 5

2 . The full story behind this is best saved for
another day, but it points to a crucial observation by comparing to the k = 2
case of example 2.3.

Remark 2.6. The zero-error one-shot capacity of a channel does not fully charac-
terize the usefulness of the channel for zero-error information-processing tasks.

In order to resolve this weakness, we’ll need to generalize our game.

2.2 Classical Source-Channel Coding

First, let’s put Proposition 2.5 in a slightly more arrow-theoretic light.

Definition 2.7 (Graph homomorphism, clique). Suppose G and H are graphs
and f : VG → VH is a function between them. We say that f is a graph
homomorphism if it takes edges to edges, i.e.

(x, y) ∈ G⇒ (f(x), f(y)) ∈ H. (1)
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We write G → H (read: “G homs to H”) if there exists some homomorphism
between G and H. A clique in a graph G is a collection of vertices C ⊆ VG that
are pairwise edge-connected, i.e. for all x 6= y ∈ C, (x, y) ∈ G.

Notice that an independent set in a graph H is the same as a clique in the
complement graph H = {(a, a′) | (a, a′) 6∈ H}, which is the same as a homomor-
phism Kn → H. (If this is your first time seeing graph homomorphisms, take
some time to convince yourself of this.)

How can we generalize the game so that graphs other than Kn appear as
the source of this homomorphism? In our original channel coding game, Charlie
gave her test only to Alice. Let’s suppose for a moment that Charlie is Nature,
and the data that he gives to Alice are the results of some experiment in Alice’s
lab. In Bob’s lab he has very powerful detectors pointed at Alice’s lab. Given
that Bob already has some information about Alice’s experiment, how much
more communication do they need in order for Bob to know the full results?

Proposition 2.8 (Operational interpretation, I). Alice and Bob win the source-
channel coding game iff G→ H, where G is the characteristic graph of the source
and H is the confusability graph of the channel.

Proof idea. Two vertices are connected by an edge in G iff it’s possible that
Bob is confused between them after receiving his side information from Charlie.
Two vertices are connected in H iff they are distinguishable. If there is a
homomorphism G→ H, then this homomorphism resolves all confusion. �

Remark 2.9 (Operational interpretation II). Let H,H ′ be the confusability

graphs of channels T and T ′. Suppose that H → H
′
. Then any zero-error

source channel coding game winnable with T is also winnable with T ′.

To make this more concrete, let G be the characteristic graph of some source.
The zero-error source-channel coding game on (G,T ) is winnable iffG→ H. But

in this case, G → H
′

by composition, so the zero-error source-channel coding
game is also winnable on (G,T ′). In other words, the channel T ′ can succeed
at any zero-error communication task that T can succeed at. Furthermore, the
homomorphism gives an effective T ′-simulation of any zero-error communication
protocol using channel T .

This allows us to think of confusability graphs as a kind of “zero-error infor-
mation processing resource” and graph homomorphisms as a kind of “resource
inequality” in precisely the sense studied by Tobias Fritz in [6]. One thing I
find interesting about this viewpoint is that the partial order of this resource is
pretty complicated: by Welzl’s theorem on graph homomorphisms, it is dense!
Alas, this is a story for another day.

2.3 Quantum Source-Channel Coding

First, we’ll fix our notations for quantum mechanics. If you’re unfamiliar and
want to learn more, I recommend John Preskill’s lecture notes, (http://www.
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theory.caltech.edu/people/preskill/ph219/) Nielsen and Chuang’s text-
book [10], or the edX course created by Thomas Vidick and Stephanie Wehner.
(https://courses.edx.org/courses/course-v1:CaltechDelftX+QuCryptox+
3T2016/info) Fix Hilbert spaces HA and HB for Alice and Bob, respectively.
The joint Hilbert space describing Alice and Bob’s systems together will be
denoted by the tensor product HA ⊗HB .

Definition 2.10 (Quantum state). A quantum state ρ ∈ L(H) is a positive
bounded linear operator with Tr ρ = 1.

For our purposes, quantum states can be thought of as a generalization of
probabilitity distributions over finite sets.

Definition 2.11 (Quantum channel). A quantum channel T between systems
HA and HB is a completely positive trace-preserving (cptp) map T : L(HA)→
L(HB).

In the classical case, we look at the stochastic transition matrices because
they are the most general linear maps that take probability distributions to
probability distributions. Similarly, the cptp maps are the most general linear
maps that take quantum states to quantum states.

Theorem 2.12 (Kraus representation). A linear map T : L(HA)→ L(HB) is

cptp iff there exist Kraus operators Ki : HA → HB such that
∑

iK
†
iKi = IA

(where IA is the identity map on HA) and the action of T satisfies

T (X) =
∑
i

KiXK
†
i . (2)

In general, |A| |B| Kraus operators suffice to represent T .

Definition 2.13 (Discrete quantum source-channel coding problem). Charlie
has some fixed collection of states

{
ρi
}
i≤k with ρi ∈ L(HA ⊗ HB). Charlie

picks i uniformly at random and gives ρiA = TrB ρ
i to Alice and ρiB = TrA ρ

i

to Bob. Alice applies some encoding map to ρiA and then sends a message over
the channel to Bob. Bob uses T (Enc(ρiA)) and ρiB together to make a guess i′.
Alice and Bob win if i′ = i.

One could consider a slightly more general game where Charlie’s choice is a
vector from a Hilbert space rather than an element from a finite set. However,
we’ll see that the discrete game already captures all the phenomena we care
about.

In order to characterize the winnable source-channel coding games, we’re
going to need a fully quantum version of the source characteristic graph, the
channel confusability graph, and the graph homomorphism. Noncommutative
graphs were first developed by Duan, Severini, and Winter in [5]. The graph
homomorphism was introduced by Stahlke [11].
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3 Quantum Graphs

Definition 3.1 (Quantum graph). A quantum graph on H is an operator system
S ⊆ L(H), i.e. S is a vector space, contains the identity, and is closed under
adjoints.

We think of H as the vertex set and the operators in S as the edge set.
We now see that quantum graphs give the right notions to characterize the
zero-error quantum source-channel coding game.

Definition 3.2 (From Theorem 14 and Equation 8 of [11]). Let T be a channel

with Kraus operators {Ki}. The confusability graph of T is ST = Span
{
K†iKi

}
.

In the discrete quantum source-channel setup, let |ψi〉 be a purification of ρi ∈
HA ⊗ HB ⊗ HC for each i, where HC is a reference system held by Charlie.
Define an isometry J : Ck → HA ⊗ HB ⊗ HC by J =

∑
i |ψi〉〈i|. Then the

characteristic graph of the source is S = TrBC

{
L(HE)JKnJ

†}, where Kn =
Span {|i〉〈j| | i, j ≤ n}. is the graphical operator system corresponding to the
complete graph on n vertices.

I like to think of ST as the space of “possible error operators” induced by
the action of T . Similarly, the characteristic graph of the source is the space
of error operators that Alice needs to correct in her communication to Bob in
order to win the source-channel coding game.
It turns out that both characteristic graphs and confusability graphs are fully
general constructions, even for a seemingly limited class of sources.

Theorem 3.3 (Lemma 2 of [4]). Every quantum graph arises as the confusabil-
ity graph of some channel.

Theorem 3.4 (Theorem 17 of [11]). Every quantum graph arises as the char-
acteristic graph of some discrete source with only two inputs.

In principle, everything that can be studied about quantum graphs could be
studied through the lens of zero-error information theory. However, studying
them in their own right has already proved somewhat interesting. Nik Weaver
has proved a so-called “quantum Ramsey theorem”, [12] and Steven Lu has
studied a notion of chromatic number that is related to one form of our main
conjecture. [9]

Definition 3.5 (Quantum graph homomorphism). Let ST ⊆ L(HA) and ST ′ ⊆
L(HB) be quantum graphs. We say that a cptp map Φ : L(HA) → L(HB) is
a quantum graph homomorphism if K†ST ′K ⊆ ST , where K is the span of the
Kraus operators of Φ.

It’s not entirely intuitive to interpret this definition. If we again think of
ST ′ as the space of “possible error operators” induced by the action of T ′, then
K†ST ′K is kind of like the space of error operators induced by Φ ◦ T ′. If this
is a subspace of the space of errors induced by T , then T ′ can simulate T in
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precisely the sense of remark 2.9. If anyone who knows things about quantum
error correction wants to correct me on this point, I’d be grateful.

Nik Weaver thinks of the operator system K†SK as a “pullback of S along
Φ”. [13] His point-of-view is bimodule-theoretic and generalizes to infinite di-
mensions; we don’t need that full formalism here. Now we see that quantum
graph homomorphisms give us a way to talk about victory in the source-channel
coding game.

Theorem 3.6 (Theorem 14 of [11]). Alice and Bob win the quantum source-
channel coding game iff S → ST , where S is the characteristic graph of the
source and ST is the distinguishability graph of the channel.

As a quick sanity check, we note that the notion of quantum graph extends
the notion of classical graph:

Definition 3.7 (Graphical operator system). If G is a classical graph without

self-loops, then SG = Span {|i〉〈j| | (i, j) ∈ G}⊥ is the quantum graph associated
with G. If S a quantum graph is equal to SG, then we’ll call S a graphical
operator system.

Proposition 3.8 (Theorem 8 of [11]). If G and H are graphs, then SG → SH

as quantum graphs iff G→ H as classical graphs.

There are lots and lots of very basic structural questions to ask about the
category of quantum graphs with quantum homomorphisms. For now, we’ll
stick to just computational questions.

Classical graphs are sufficiently expressive to capture all of NP. (I think
there is a theorem that makes this precise, but I can’t recall it.) Indeed, the
literature is rife with computationally interesting problems about classical graph
theory.

I’m very interested in the development of a general quantum graph theory,
a program first suggested in [5]. For the remainder of the article, we’ll focus on
the following comptuational problem: Given quantum graphs S and S′, does
S → S′?

4 Complexity of Source-Channel Coding

4.1 Quantum Complexity

In order to talk about the computational complexity of the quantum source-
channel coding problem, we’ll have to introduce the class QMA, a quantum
generalization of NP. I’ll assume familiarity with the latter but not the former.

Definition 4.1 (Decision problem). A language L is a set of finite strings. The
decision problem associated with L is the computational task “given a string x,
decide whether x ∈ L.”

7



Jalex Stark February 19, 2017

Definition 4.2 (NP complexity class). A language L (or its associated decision
problem) is in NP iff there exists a polynomial time algorithm V (the verifier)
such that

x ∈ L⇔ ∃cV (x, c) accepts.

c is called the certificate for x. We typically think of c as a short proof that
x ∈ L.

Promise problems are a relaxation of decision problems that are useful for
problems involving real number parameters. Instead of sharply delineating be-
tween “in L” and “not in L”, we allow for some gray area in between. We are
content if our algorithms fail to produce useful answers in this gray area; we
can think of the gray area as consisting of instances which require too much
numerical accuracy to efficiently distinguish.

Definition 4.3 (Promise problem). A promise problem consists of two lan-
guages Lyes, Lno. The computational task associated to a promise problem is:

Given the promise that x ∈ Lyes or x ∈ Lno, decide which is the case.

A decision problem can be thought of as a promise problem where Lyes∪Lno

is the set of all strings. It’s tempting to define the class QNP that comes from
replacing V by a quantum algorithm and c by a quantum certificate. However,
quantum algorithms are inherently probabilistic, so we like to allow for positive
probability of error.

Definition 4.4 (QMA complexity class). A language L is in QMA iff there
exists a polynomial time quantum algorithm V (the verifier) such that

x ∈ L⇔ ∃cV (x, c) accepts

Definition 4.5 ((NP)(QMA)-completeness). A language L is NP-complete if
for every language L′ in NP, there is a polynomial-time reduction R such that
R(x) ∈ L iff x ∈ L′. QMA completeness is defined analogously.

4.2 Classical source-channel coding

Consider first the problem of fixed-source channel coding. We fix some behavior
for Charlie in the source-channel coding game, and then ask: given a description
of a classical channel T , can Alice and Bob win in the source-channel coding
game with Charlie and T? By theorem 3.6, this is equivalent to the following
problem.

Definition 4.6 (Fixed-source channel coding problem). Fix a graph X. Given
a graph G, does X → G?

Proposition 4.7. For any X, there is a polynomial time algorithm to decide
the fixed-source channel coding problem.
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Proof. The following algorithm works: iterate through all functions X → G.
Check if each one is a homomorphism. This runs in time polynomial in |G|, the

size of the vertex set of G, since there are only |G||X| functions, where |X| is
constant. Checking that a particular function is a homomorphism requires only
checking one constraint for each edge of G. �

Definition 4.8 (Fixed-channel source coding problem). Fix a graph X. Given
a graph G, does G→ X?

Fact 4.9. Fixed-channel source coding is NP-complete, even for X the triangle
graph.

This is the very well known 3-COLORING problem.

4.3 The quantum clique problem

Now we focus on the idea of taking problems on classical graphs and lifting
them to quantum graphs. Salman Beigi and Peter Shor had this idea in 2007,
4 years before the introduction of noncommutative graphs! In [1], they defined
a problem they called QUANTUM-k-CLIQUE and proved it was QMA-complete.
However, they don’t take much notice of the fact that their proof works for the
case where k is fixed to 2; they had thought of k as an input to the problem. At
that time, they were thinking of this as a generalization of an NP-hard problem
like MAX-CLIQUE. However, we’ll argue that it’s really a generalization of
the very easy problem “Given a graph G, does G have any edges?”

Definition 4.10 (Definition 2.9 of [1],QUANTUM-k-CLIQUE). Given a channel
T , do there exist ρ1, . . . , ρk such that

∑
i 6=j Tr(Tρi)(Tρj) ≤ a, or is it instead

the case that for all ρ1, . . . , ρk we have
∑

i 6=j Tr(Tρi)(Tρj) ≥ b?

Proposition 4.11. T is a yes instance of QUANTUM-k-CLIQUE with a = 0 iff
there is a homomorphism Kk → ST

(We note that it is justifiable to think about setting a to 0 in QUANTUM-k-CLIQUE:
Beigi and Shor prove that this problem is complete for the class QMA1 of QMA
problems with one-sided error. We’ll talk only about the QMA case here, but
it’s easy to see that essentially the same proof works for the QMA1 case.)

Proof sketch. To simplify notation, let k = 2. We go through the discrete
source-channel coding game. Let the source send two perfectly distinguishable
states |0〉〈0| and |1〉〈1| to Alice, while sending nothing to Bob. This source has
characteristic graph K2, which is exactly the classical graph with two vertices
and one edge.

Alice and Bob win the source-channel coding game precisely iff Alice has
some function Φ : |0〉〈0| 7→ ρ1, |1〉〈1| 7→ ρ2 such that Bob can distinguish be-
tween Tρ1 and Tρ2. The map Φ is a homomorphism K2 → S by theorem 3.6.
�

Theorem 4.12 (Theorem 3.1 of [1]). QUANTUM-2-CLIQUE is QMA-complete.
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The proof I present here is exactly the proof given by Beigi and Shor, up
to notational differences. I reproduce it in full detail, rather than just referring
you to the paper. I do this because the proof is marvellously short! The sim-
plicity of the proof is evidence that quantum graph problems are very natural
representatives of the QMA complexity class.

Proof of Theorem 4.12. Let H =
∑d

i Hi with ‖Hi‖ ≤ 1 be an instance of the
(a, b)-LOCAL HAMILTONIAN problem, where H acts on a Hilbert space H.

We’ll give a reduction to the (a2

d2 ,
b2

d2 )-QUANTUM-2-CLIQUE problem.
Let M = I − 1

dH, so that 0 ≤ M ≤ I and 0 ≤ 1
dH ≤ M . In particular,

{H ⊗ I,M ⊗ |0〉〈0| ,M ⊗ |1〉〈1|} is a POVM on the Hilbert space H⊗C2. Now
consider the channel T : L(H⊗C2)→ L(C3) which makes a measurement with
this POVM and reports the classical result:

Tρ =
1

d
(Tr(H ⊗ I)ρ) |0〉〈0|+ (Tr(M ⊗ |0〉〈0|)ρ) |1〉〈1|+ (Tr(M ⊗ |1〉〈1|)ρ) |2〉〈2|

(3)
First, we assume that all eigenvalues of H are at least b and show that no pair of

states form a “ b2

d2 -2-clique” in the distinguishability graph of T . More precisely,
we assume that TrHσ ≥ b for all density matrices σ ∈ L(H). Then for any
ρ ∈ L(H ⊗ C2), we have Tr(H ⊗ I)ρ ≥ b. (One way to see this is by first
performing a partial trace on the C2 subsystem and then taking the full trace.)
Then for any ρ1, ρ2 ∈ L(H⊗ C2),

Tr(Tρ1)(Tρ2) ≥
(

1

d
Tr(H ⊗ I)ρ1

)(
1

d
Tr(H ⊗ I)ρ2

)
≥ b2

d2
. (4)

We conclude that if H is a no instance of LOCAL HAMILTONIAN , then T is a
no instance of QUANTUM-2-CLIQUE.

Next, we assume that H has a small eigenvalue and find a “a2

d2 -2-clique” in
the distinguishability graph of T . More precisely, let σ be such that TrHσ ≤ a.
Then let ρ1 = σ⊗|0〉〈0| , ρ2 = σ⊗|1〉〈1|. It’s clear that Tr(H⊗ I)ρ1 = TrHσ =
Tr(H ⊗ I)ρ2, so that in particular each of these are at most a. Furthermore, we
have Tr(M ⊗ |0〉〈0|)ρ2 = Tr(M ⊗ |1〉〈1|)ρ1 = 0. Therefore,

(Tρ1)(Tρ2) =

(
1

d
TrHσ

)2

|0〉〈0| . (5)

In particular, we have

Tr(Tρ1)(Tρ2) ≤ a2

d2
. (6)

We conclude that if H is a yes instance of LOCAL HAMILTONIAN , then T is
a yes instance of QUANTUM-2-CLIQUE. So the map H 7→ T is a reduction
from LOCAL HAMILTONIAN to QUANTUM-2-CLIQUE. Therfore, the latter is
QMA-complete. �
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We saw that QUANTUM-2-CLIQUE can be thought of as a fixed-source
quantum graph homomorphism problem. We now introduce QUANTUM k-
COLORING as a fixed-target quantum graph homomorphism problem.

Definition 4.13 (QUANTUM k-COLORING, fully quantum version).

• Input: States ρ1, ρ2 ∈ L(HA ⊗HB).

• Promise: Either there exists some cptp map T : L(HA) → L(Ck) such
that

Tr[(T ⊗ IB)ρ1][(T ⊗ IB)ρ2] ≤ a, (7)

or else for all such T ,

Tr[(T ⊗ IB)ρ1][(T ⊗ IB)ρ2] ≥ b. (8)

• Problem: Decide which is the case.

Think of (T ⊗IB)ρi as the state that Bob holds in the source-channel coding
game where Alice uses encoding map T and then communicates with the identity
channel I : L(Ck)→ L(Ck).

Proposition 4.14. ρ1, ρ2 is a yes instance of QUANTUM-k-CLIQUE with a = 0
iff there is a homomorphism S → L(Ck), where S is the characteristic graph of
the discrete source which produces ρ1 or ρ2.

The proof of this is essentially the same as the proof of proposition 4.11.
If we give Alice and Bob only a classical communication channel, the problem
changes a bit.

Definition 4.15 (QUANTUM k-COLORING, quantum-classical version).

• Input: States ρ1, ρ2 ∈ L(HA ⊗HB).

• Promise: Either there exists some POVM {Mi} on HA such that when
Alice measures ρiA with {Mi} and communicates the outcome to Bob, he
can guess i with probability 1− a, OR

for any POVM that Alice chooses, Bob’s guessing probability is at most
1
2 + b.

• Problem: Decide which is the case.

The POVM {Mi} induces the cptp map Tρ =
∑

I(TrMiρ) |i〉〈i|. This is
precisely a homomorphism to Kk.

Proposition 4.16. ρ1, ρ2 is a yes instance of QUANTUM-k-CLIQUE with a = 0
iff there is a homomorphism S → Kk, where S is the characteristic graph of the
discrete source which produces ρ1 or ρ2.

Problem 4.1. Classify the computational complexity of QUANTUM k-COLORING.
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It’s immediate that the latter formulation is NP-hard, since classical graphs
and classical graph homomorphisms are a special case of quantum graphs and
quantum graph homomorphisms. It’s not hard to show that both formula-
tions are in QMA: the witness is the homomorphism. Following our intu-
ition in the classical case, this problem smells like it should be harder than
QUANTUM-k-CLIQUE and therefore QMA-complete. Of course, it’s also plau-
sible that there’s some clever algorithm putting this in BQP. Any thoughts
towards a resolution of this problem are appreciated.
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