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Abstract

We study a classic guessing game played by an infinite sequence of play-
ers wearing randomly colored hats. We use the axiom of choice to give a
strategy that always wins, and then we show the main reults: any mea-
surable strategy wins with probability strictly less than 1. The proof of
the latter is an application of the Kolmogorov 0-1 law. The main result
has likely been considered before, but the author has been unable to find
a reference. Several further questions are posed at the end of section 2.

1 The game

We start with a classic puzzle.

Problem 1.1. n people stand in a line. The game master puts either a black
hat or a white hat on each person’s head, independently with equal probability.
Each person can see the hats of all of the people in front of them, but not
of those people behind them. Starting with the person in the back, the game
master asks each player to announce a guess for their own hat color. Each player
hears all of the guesses of the people who go before them. They win if all but
the first person guesses correctly. The n players collude beforehand to come up
with a fixed joint strategy. What is the highest probability with which they can
win?

To be more precise, let’s identify white hats with the symbol 0 and black
hats with the symbol 1. Let’s call the color of the hat on the nth player’s head
Xn. Let’s call the guess announced by the nth player Yn. The strategy of

the first player can be described by some function f
(n)
1 : {0, 1}n−1 → {0, 1}

with the formula Y1 = f
(n)
1 (X2, . . . , Xn). The ith player’s strategy is also

a function f
(n)
i : {0, 1}n−1 → {0, 1}, but now remember that the ith player

hears the guesses of the players that come before them. We can write Yi =
fi(Y1, . . . , Yi−1, Xi+1, . . . , Xn). The players win the game if for all i > 1, we
have Yi = Xi.
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Solution to Problem 1.1. They can win with probability 1. That is, we’ll find a

solution that works for all assignments to the Xi. In fact, all of the f
(n)
i will be

the same function: XOR. This is the function that returns 0 if an even number
of arguments are 1 and returns 1 if an odd number of arguments are 1. We’ll
write the XOR of two bits a and b as a ⊕ b and the XOR of n bits a1, . . . , an
as

⊕n
i=1 ai or as a1 ⊕ a2 ⊕ · ⊕ an. ⊕ is in fact addition in the field with two

elements. In particular, it is commutative and associative, has 0 as the identity,
and satisfies a⊕ a = 0 for all a. We’ll define the strategy functions as:

f
(n)
i (Y1, . . . , Yi−1, Xi+1, . . . , Xn) = Y1 ⊕ · · · ⊕ Yi−1 ⊕Xi+1 ⊕ · · · ⊕Xn

=

i−1⊕
j=0

Yj ⊕
n−1⊕

j=i+1

Xj

To see that the strategy wins with probability 1, we show by induction on k
that Xk = Yk for all k > 1. For k = 2, we see that

Y2 = Y1 ⊕
n⊕

j=3

Xj =

X2 ⊕
n⊕

j=3

Xj

⊕ n⊕
j=3

Xj

= X2 ⊕

 n⊕
j=3

Xj ⊕
n⊕

j=3

Xj

 = X2.

Now assume that Xi = Yi for all i < k. Then we have

Yk = Y1 ⊕

k−1⊕
j=2

Yj ⊕
n⊕

k+1

Xj

 =
⊕

1≤j≤n

Xj ⊕
⊕

1≤j≤n
j 6=k

Xj = Xk. (1)

�

Problem 1.2. What if we have a countably infinite sequence of players?

Formally, we now ask about a countable sequence of independent identically
distributed (iid) hat colors (Xi)i∈N and a countable sequence (fi)i∈N of strategy
functions. We define Yi = fi(Y1, . . . Yi−1, Xi+1, . . .) and we say the players win
if Xi = Yi for all i ≥ 1.

In the finite case, essentially the same strategy worked for every n, and the
correctness of this strategy follows from an induction proof. Näıvely, we should
be able to use this to give a limiting strategy in the infinite case.

“Solution”. Set Y
(n)
k =

⊕k−1
i=1 Yi ⊕

⊕n
i=k+1Xi. This is what the kth person

would announce if they intended to play the game with only the first n players

in line. Set Yk equal to limn Y
(n)
k , ignoring for now the question of whether this
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limit exists. We want to argue that Xk = Yk for all k > 1. We proceed by
induction.

Yk = lim
m
Y1 ⊕

k−1⊕
i=2

Yi ⊕
m⊕

i=k+1

Xi

Yk = lim
m
Y1 ⊕

k−1⊕
i=2

Xi ⊕
m⊕

i=k+1

Xi

Yk = lim
m
Y1 ⊕

m⊕
i=2

Xi ⊕Xk

Yk = Y1 ⊕Xk ⊕ lim
m

m⊕
i=2

Xi

Yk = Y1 ⊕Xk ⊕ Y1
Yk = Xk.

In the fourth line, we use the fact that adding a constant is a continuous function,
and that applying continuous functions commutes with taking limits. �

There is of course one gaping flaw in this argument: with probability 1, the
limits defining the Yi do not exist. Then we’re not even close to defining a
strategy yet: we’ve only solved the case where all but finitely many of the hats
are 0. At the same time, our “proof” really was using properties of the limit to
say things about the performance of our strategy. What limit properties did we
need to make it work?

Proposition 1.1. There exists a function lim∗ from sequences of reals to reals
satisfying the following properties:

1. If (xn) converges, then lim∗n(xn) agrees with limn→∞ xn.

2. lim∗n xn is always defined.

3. If f is a continuous function, then f(lim∗n xn) = lim∗n f(xn).

Theorem 1.2. There is a strategy which wins the countable hat game on every
input.

Proof. From our earlier “solution”, replace lim with lim∗ from proposition 1.1.
�

A function lim∗ satisfying the criteria of the proposition (and a few other
properties) is called an ultralimit. Their existence requires the Axiom of Choice,
which means that the resulting strategy is not easily described. In particular,
there is no good answer to the question, what should the first person say if
all hats are colored 1? Indeed, there are different ultralimits the give different
answers to this question. We use the Axiom of Choice to nonconstructively
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choose a way to answer all such questions simultaneously and consistently. The
rest of this article will argue that this use of the axiom of choice is essential: if
we try to do this in an explicit, constructive way, then we will fail. First, we’ll
need to introduce some concepts from measure theory.

2 Nice strategies don’t work

2.1 A touch of probability theory

We’ll quickly review just enough measure theory to state and prove the main
theorem. For more detail, I recommend Omer Tamuz’s wonderful lecture notes.
[2]

Definition 2.1 (Probability space). A probability space is a triple (Ω,Σ,Pr).
Ω is a set known as the sample space. Σ ⊆ P(Ω) is a σ-algebra which we’ll call
the event space. Pr : Σ → [0, 1] is the probability measure, which must satisfy
the axioms of a countably additive measure.

A point in Ω can be thought of as a fixed outcome of an underlying random
process. The event space Σ tells you what kinds of things you can and can’t
talk about. The probability measure Pr tells you how likely each event is.

Example 2.2. Let Ω = [0, 1] ⊆ R and say that a set X ⊆ Ω is an event (that is,
X ∈ Σ) iff X can be obtained by starting from intervals and applying countable
unions, countable intersections, and complements. (This is known as the Borel
σ-algebra.) Finally, let Pr[(a, b)] = b − a, and extend the probability measure
by countable additivity and complements.

We can think of this probability measure as picking a uniform random point
on [0, 1].

Example 2.3. Let Ω′ = {0, 1}N be the space of countably infinite bit-strings and
say that a set is an event if it can be obtained from “prefix-sets” of the form
Aw = {ω ∈ Ω′ : w ⊆ ω} by applying countable unions, countable intersections,
and complements. (In the previous, w is a finite bit string and we say that
w ⊆ ω if w is a prefix of ω, i.e. w has length |w| and the first |w| bits of ω are
the bits of w.) Finally, let Pr[Aw] = 2−|w| and extend the probability measure
by countable additivity and complements. We can think of this probability
measure as picking a string by flipping an infinite sequence of independent fair
coins and recording the results.

These two probability spaces are in fact isomorphic by the map that sends
a real number to its binary representation.

Definition 2.4. Let f : Ω → Ω′ be a function between measure spaces.
We say that f is measurable if, for every event A ∈ Σ′, the set [f ∈ A] :=
{ω ∈ Ω : f(ω) ∈ A} is an event in Σ. Note that the notin of measurability de-
pends on the measures Σ and Σ′; we usually supress this from the notation,
since the choice of measure is usually clear.
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Intuitively, we should think of measurable functions as “the nice functions”
between probability spaces. For example, the Banach–Tarski paradox requires
the existence of non-measurable functions. Finally, we can state the main the-
orem.

Theorem 2.5. If (fi)i∈N is a strategy for the countably infinite hat game which
wins with probability 1, then f1 is not a measurable function.

The proof will be an application of Kolmogorov’s 0-1 law, which applies to
sequences of independent events.

Definition 2.6. We say two events A,B are independent if one of the following
equivalent conditions holds:

• Pr[A ∧B] = Pr[A] Pr[B], or

• Pr[A | B] = Pr[A], or

• Pr[B | A] = Pr[B].

Where Pr[A | B] denotes the conditional probability of A given B. We say
that A is independent of the finite collection {Bi} if A is independent from
every event formed by intersections and complements of the Bi. We say that a
collection of events C is independent if each event A ∈ C is independent from
the subcollection C \A.

Theorem 2.7 (Kolmogorov). Let (A1, A2, . . .) be a a countable sequence of in-
dependent events. Suppose that A = f(A1, A2, . . .) for some measurable function
f and that A is independent from every finite subcollection of Ai. (We say that
A is a tail event.) Then Pr[A] ∈ {0, 1}.

This is actually a slight weakening of the fact that is usually referred to
as “Kolmogorov’s 0-1 law”. For a more general statement, see any probability
theory text. [2]

Proof of theorem 2.5. Assume f1 is measurable, so that in particular, Pr[Y1 = 0]
and Pr[Y1 = 1] are well-defined. We’ll derive a contradiction by showing that
they must be equal by symmetry and that they must be in {0, 1} by Kolmogorov.

(This is absurd since they must also sum to 1.) , Let Ω = {0, 1}N be the space
of possible hat assignments, with probability measure given by a countable
sequence of independent fair coin flips. Let pk : Ω → Ω be the function which
flips the kth bit of a sequence. pk is a measure-preserving bijection. Let W ⊆ Ω
be the set of strings on which Xi = Yi for all i > 1. By assumption, W is a
probability 1 event. Define Wk = W ∩ pk(W ). Since pk is measure-preserving,
Pr[pk(W )] = 1 and indeed Pr[Wk] = 1.

Let ω ∈ Wk. Consider the game as played on ω and on pk(ω), as seen from
the kth player’s perspective for k > 1. We have

ωk = fk(f1(ω), ω1, . . . , ωk−1, ωk+1, . . .) (2)

pk(ω)k = fk(f1(pk(ω)), ω1, . . . , ωk−1, ωk+1, . . .) (3)
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The bits defined in the above two lines are unequal. Since fk is a deterministic
function, we must have that its inputs on the two lines are unequal. So f1(ω) 6=
f1(pk(ω)). Since pk is measure preserving and Wk is pk-invariant, we have

Pr[Y1 = 0 |Wk] = Pr[Y1 = 1 |Wk]. (4)

Since Wk is a probability 1 event, we get the same for the unconditional prob-
abilities: Pr[Y1 = 0] = 1

2 = Pr[Y1 = 1]. Now let w ∈ {0, 1}k−1 and let
Aw be the event that the first k − 1 hat colors are given by w. Since Aw

is a positive probability event and Wk is a probability 1 event, we have that
Pr[Y1 = 0 | Aw] = Pr[Y1 = 0 | Aw ∧Wk]. The argument leading to equation (4)
holds for any pk-invariant subevent of W , (Wk being the maximal such event)
in particular for Wk ∩Aw. Therefore,

Pr[Y1 = 0 | Aw] = Pr[Y1 = 0 | Aw ∧Wk]

=
1

2
= Pr[Y1 = 1 | Aw ∧Wk] = Pr[Y1 = 1 | Aw]. (5)

Then 1
2 = Pr[Y1 = 0 | Aw] = Pr[Y1 = 0], so the event [Y1 = 0] is independent

of the choices of the first k − 1 hat colors. k was arbitrary, so by Kolmogorov,
Pr[Y1 = 0] ∈ {0, 1}. Contradiction! �

2.2 Further questions

We’ve proven that in this game, all measurable strategies have probability less
than 1. I suspect that in fact they all have win probability 0 but have been
unable to prove this.

Problem 2.1. Either show that all measurable strategies win with probability
0 or exhibit a measurable strategy winning with positive probability.

How about a weaker statement, that measurable strategies have win proba-
bilities bounded away from 1?

Problem 2.2. Either find a sequence of measurable strategies whose win prob-
abilities approach 1 or prove that no such sequence exists.

Here’s a fun fact which helps point out the kinds of obstructions that exist in
finding proofs for the above facts: assuming Choice, for every p ∈ [0, 1], there is
a strategy which wins with probability exactly p. (Hint: to win with probability
1
2 , take the probability 1 strategy and have the 0th person say the wrong thing
if the 1st person has a black hat.)

We can also think about relaxing the win condition.

Problem 2.3. Play the same game, but now say that the players win if all
but finitely many guess their hat color correctly. Give a measurable strategy
winning with probability 1 or prove that none exists.
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A nonexistence result here would imply our main theorem as a corollary. As
a first step towards this problem, we might consider the win condition where all
but the first k people guess correctly. Examining the structure of our proof, we
show that the conditional min-entropy of (Y1, . . . , Yk) is at least 1, conditioned
on any finite substring of the hats. In the case k = 1, this proves that Y1 is
uniform and tail, so we can apply Kolmogorov. Perhaps this bound on the
conditional min-entropy is enough to apply some stronger 0-1law, or maybe we
need a different technique altogether. This also tells us that our proof is not
already enough to handle the case of m hat colors (wherein we need to show
logm conditional min-entropy in order to prove that Y1 is uniform and tail.)

Problem 2.4. Modify the game so that all players guess simultaneously, i.e.
Yk is a function only of (Xk+1, Xk+2, . . .). Again require that all but finitely
many people guess correctly. It is well-known that with the axiom of choice,
there is a strategy that always wins. Give a measurable strategy winning with
probability 1 or show that none exists.

3 Appendix: Ultralimits

Let’s recall the usual definition of a limit of a sequence over R, and then play
with it until we can get an idea for how to define lim∗.

Definition 3.1 (Limit of a sequence, I).

lim
n→∞

xn = L⇔ ∀ε∃N [|xn − L| < ε if n > N ] (6)

In words, we say that (xn) converges to L if once we fix ε > 0, there is some
largest N so that xN is ε-far away from L. Reframing this, we could say that
the set of n so that xn is ε-far from L is finite.

lim
n→∞

xn = L⇔ ∀ε[{n : |xn − L| > ε} is finite] (7)

Instead of saying that the set of bad indices is finite, we might say that the
set of good indices is cofinite. To make this notationally cleaner, let’s introduce
the collection of all cofinite sets F0 = {A ⊆ N : |N \A| <∞}. This collection is
sometimes referred to as the Fréchet filter.

Definition 3.2 (Limit of a sequence, II).

lim
n→∞

xn = L⇔ ∀ε[{n : |xn − L| ≤ ε} ∈ F0] (8)

Take a moment to convince yourself that this definition coincides with Definition
3.1. We want to define a notion of limit that converges more often, so we want
to make our definition easier to satisfy. In order to do this, let’s enlarge F0.

Definition 3.3 (F-limit of a sequence). Let F ⊇ F0.

lim
n→F

xn = L⇔ ∀ε {n : |xn − L| ≤ ε} ∈ F (9)
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Our goal is to find F so that limn→F satisfies the properties of Proposition
1.1 and is also a nice notion of limit. For a moment, let’s restrict ourselves to
0-1 sequences. Let’s suppose that xn ∈ {0, 1} for all n and limn→F xn = 1.
Taking any ε ∈ (0, 1) in definition 3.3 shows that {i : xi = 1} ∈ F .

If (xn) is any sequence from {0, 1}N, then its F-limit must be either 0 or 1.
Then of the two sets X1 = {i : xi = 0} and X1 = {i : xi = 1}, at least one must
be in F .

Suppose limn→F xn = 1 and limn→F yn = 1. Then we’d like limn→F xnyn = 1
as well. This holds iff {i : xi = 1 ∧ yi = 1} ∈ F . This set is exactly X1 ∩ Y1,
where X1 is as defined above and Y1 is similar. We conclude that F should be
closed under intersection.

Suppose limn→F xn = 1 and limn→F yn = 0. Then we hope limn→F (xn +
yn) = 1 also. In the special case that Y1 ⊆ X1, this amounts to requiring that
the limit stays 1 when we flip some of the bits from 0 to 1. In other words, we
ask that F is closed upwards.

Summarizing the above discussion, we want F to satisfy the following defi-
nition.

Definition 3.4. We say that F ⊆ P(N) is a nonprincipal ultrafilter if it is. . .

(i) closed upwards, i.e. B ⊇ A ∈ F implies B ∈ F

(ii) closed under intersection, i.e. A,B ∈ F implies A ∩B ∈ F

(iii) nonprincipal, i.e. contains the Fréchet filter

(iv) nontrivial, i.e. does not contain ∅

(v) “ultra” or maximal, i.e. for every set A, either A ∈ F or N \A ∈ F .

Axiom 3.6 is a form of the Axiom of Choice from which we can easily derive
the existence of nonprincipal ultrafilters.

Definition 3.5. Let (P,≤) be a partially ordered set. We say that a subset
C ⊆ P is a chain if it is totally ordered, i.e. for every a, b ∈ C we have a ≤ b or
b ≤ a. We say that c is an upper bound for C if for all a ∈ C, we have a ≤ c.
Axiom 3.6 (Zorn’s Lemma). Suppose (P,≤) is a poset such that that every
chain in P has an upper bound. Then P has a maximal element, i.e. an element
m such that m ≤ m′ only if m = m′.

For a direct statement of the Axiom of Choice and a proof that Zorn’s Lemma
is equivalent, see any introductory set theory text.

Proposition 3.7. Nonprincipal ultrafilters exist.

Proof. Consider the poset whose elements are set families satisfying the first
four properties of definition 3.4 of F0, ordered by set inclusion (such families
are called filters). It is easy to check that the union of a chain of filters is again
a filter. Therefore chains in this poset have upper bounds, and we conclude that
there are maximal elements, i.e. nonprincipal ultrafilters. �

A nice introduction to ultrafilters extending our treatment can be found in [1].
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